3.681 \(\int \frac{(f+g x)^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{d+e x}} \, dx\)

Optimal. Leaf size=200 \[ -\frac{8 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g) \left (2 a e^2 g-c d (5 e f-3 d g)\right )}{105 c^3 d^3 e (d+e x)^{3/2}}+\frac{8 g \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g)}{35 c^2 d^2 e \sqrt{d+e x}}+\frac{2 (f+g x)^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{7 c d (d+e x)^{3/2}} \]

[Out]

(-8*(c*d*f - a*e*g)*(2*a*e^2*g - c*d*(5*e*f - 3*d*g))*(a*d*e + (c*d^2 + a*e^2)*x
 + c*d*e*x^2)^(3/2))/(105*c^3*d^3*e*(d + e*x)^(3/2)) + (8*g*(c*d*f - a*e*g)*(a*d
*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(35*c^2*d^2*e*Sqrt[d + e*x]) + (2*(f
+ g*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(7*c*d*(d + e*x)^(3/2))

_______________________________________________________________________________________

Rubi [A]  time = 0.68347, antiderivative size = 200, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 46, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.065 \[ -\frac{8 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g) \left (2 a e^2 g-c d (5 e f-3 d g)\right )}{105 c^3 d^3 e (d+e x)^{3/2}}+\frac{8 g \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g)}{35 c^2 d^2 e \sqrt{d+e x}}+\frac{2 (f+g x)^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{7 c d (d+e x)^{3/2}} \]

Antiderivative was successfully verified.

[In]  Int[((f + g*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/Sqrt[d + e*x],x]

[Out]

(-8*(c*d*f - a*e*g)*(2*a*e^2*g - c*d*(5*e*f - 3*d*g))*(a*d*e + (c*d^2 + a*e^2)*x
 + c*d*e*x^2)^(3/2))/(105*c^3*d^3*e*(d + e*x)^(3/2)) + (8*g*(c*d*f - a*e*g)*(a*d
*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(35*c^2*d^2*e*Sqrt[d + e*x]) + (2*(f
+ g*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(7*c*d*(d + e*x)^(3/2))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 61.6233, size = 196, normalized size = 0.98 \[ \frac{2 \left (f + g x\right )^{2} \left (a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )\right )^{\frac{3}{2}}}{7 c d \left (d + e x\right )^{\frac{3}{2}}} - \frac{8 g \left (a e g - c d f\right ) \left (a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )\right )^{\frac{3}{2}}}{35 c^{2} d^{2} e \sqrt{d + e x}} + \frac{8 \left (a e g - c d f\right ) \left (a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )\right )^{\frac{3}{2}} \left (2 a e^{2} g + 3 c d^{2} g - 5 c d e f\right )}{105 c^{3} d^{3} e \left (d + e x\right )^{\frac{3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((g*x+f)**2*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d)**(1/2),x)

[Out]

2*(f + g*x)**2*(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))**(3/2)/(7*c*d*(d + e*x
)**(3/2)) - 8*g*(a*e*g - c*d*f)*(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))**(3/2
)/(35*c**2*d**2*e*sqrt(d + e*x)) + 8*(a*e*g - c*d*f)*(a*d*e + c*d*e*x**2 + x*(a*
e**2 + c*d**2))**(3/2)*(2*a*e**2*g + 3*c*d**2*g - 5*c*d*e*f)/(105*c**3*d**3*e*(d
 + e*x)**(3/2))

_______________________________________________________________________________________

Mathematica [A]  time = 0.135204, size = 90, normalized size = 0.45 \[ \frac{2 ((d+e x) (a e+c d x))^{3/2} \left (8 a^2 e^2 g^2-4 a c d e g (7 f+3 g x)+c^2 d^2 \left (35 f^2+42 f g x+15 g^2 x^2\right )\right )}{105 c^3 d^3 (d+e x)^{3/2}} \]

Antiderivative was successfully verified.

[In]  Integrate[((f + g*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/Sqrt[d + e*x],x]

[Out]

(2*((a*e + c*d*x)*(d + e*x))^(3/2)*(8*a^2*e^2*g^2 - 4*a*c*d*e*g*(7*f + 3*g*x) +
c^2*d^2*(35*f^2 + 42*f*g*x + 15*g^2*x^2)))/(105*c^3*d^3*(d + e*x)^(3/2))

_______________________________________________________________________________________

Maple [A]  time = 0.012, size = 116, normalized size = 0.6 \[{\frac{ \left ( 2\,cdx+2\,ae \right ) \left ( 15\,{g}^{2}{x}^{2}{c}^{2}{d}^{2}-12\,acde{g}^{2}x+42\,{c}^{2}{d}^{2}fgx+8\,{a}^{2}{e}^{2}{g}^{2}-28\,acdefg+35\,{f}^{2}{c}^{2}{d}^{2} \right ) }{105\,{c}^{3}{d}^{3}}\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade}{\frac{1}{\sqrt{ex+d}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((g*x+f)^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2),x)

[Out]

2/105*(c*d*x+a*e)*(15*c^2*d^2*g^2*x^2-12*a*c*d*e*g^2*x+42*c^2*d^2*f*g*x+8*a^2*e^
2*g^2-28*a*c*d*e*f*g+35*c^2*d^2*f^2)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)/c^3
/d^3/(e*x+d)^(1/2)

_______________________________________________________________________________________

Maxima [A]  time = 0.733543, size = 180, normalized size = 0.9 \[ \frac{2 \,{\left (c d x + a e\right )}^{\frac{3}{2}} f^{2}}{3 \, c d} + \frac{4 \,{\left (3 \, c^{2} d^{2} x^{2} + a c d e x - 2 \, a^{2} e^{2}\right )} \sqrt{c d x + a e} f g}{15 \, c^{2} d^{2}} + \frac{2 \,{\left (15 \, c^{3} d^{3} x^{3} + 3 \, a c^{2} d^{2} e x^{2} - 4 \, a^{2} c d e^{2} x + 8 \, a^{3} e^{3}\right )} \sqrt{c d x + a e} g^{2}}{105 \, c^{3} d^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(g*x + f)^2/sqrt(e*x + d),x, algorithm="maxima")

[Out]

2/3*(c*d*x + a*e)^(3/2)*f^2/(c*d) + 4/15*(3*c^2*d^2*x^2 + a*c*d*e*x - 2*a^2*e^2)
*sqrt(c*d*x + a*e)*f*g/(c^2*d^2) + 2/105*(15*c^3*d^3*x^3 + 3*a*c^2*d^2*e*x^2 - 4
*a^2*c*d*e^2*x + 8*a^3*e^3)*sqrt(c*d*x + a*e)*g^2/(c^3*d^3)

_______________________________________________________________________________________

Fricas [A]  time = 0.270867, size = 522, normalized size = 2.61 \[ \frac{2 \,{\left (15 \, c^{4} d^{4} e g^{2} x^{5} + 35 \, a^{2} c^{2} d^{3} e^{2} f^{2} - 28 \, a^{3} c d^{2} e^{3} f g + 8 \, a^{4} d e^{4} g^{2} + 3 \,{\left (14 \, c^{4} d^{4} e f g +{\left (5 \, c^{4} d^{5} + 6 \, a c^{3} d^{3} e^{2}\right )} g^{2}\right )} x^{4} +{\left (35 \, c^{4} d^{4} e f^{2} + 14 \,{\left (3 \, c^{4} d^{5} + 4 \, a c^{3} d^{3} e^{2}\right )} f g +{\left (18 \, a c^{3} d^{4} e - a^{2} c^{2} d^{2} e^{3}\right )} g^{2}\right )} x^{3} +{\left (35 \,{\left (c^{4} d^{5} + 2 \, a c^{3} d^{3} e^{2}\right )} f^{2} + 14 \,{\left (4 \, a c^{3} d^{4} e - a^{2} c^{2} d^{2} e^{3}\right )} f g -{\left (a^{2} c^{2} d^{3} e^{2} - 4 \, a^{3} c d e^{4}\right )} g^{2}\right )} x^{2} +{\left (35 \,{\left (2 \, a c^{3} d^{4} e + a^{2} c^{2} d^{2} e^{3}\right )} f^{2} - 14 \,{\left (a^{2} c^{2} d^{3} e^{2} + 2 \, a^{3} c d e^{4}\right )} f g + 4 \,{\left (a^{3} c d^{2} e^{3} + 2 \, a^{4} e^{5}\right )} g^{2}\right )} x\right )}}{105 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{e x + d} c^{3} d^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(g*x + f)^2/sqrt(e*x + d),x, algorithm="fricas")

[Out]

2/105*(15*c^4*d^4*e*g^2*x^5 + 35*a^2*c^2*d^3*e^2*f^2 - 28*a^3*c*d^2*e^3*f*g + 8*
a^4*d*e^4*g^2 + 3*(14*c^4*d^4*e*f*g + (5*c^4*d^5 + 6*a*c^3*d^3*e^2)*g^2)*x^4 + (
35*c^4*d^4*e*f^2 + 14*(3*c^4*d^5 + 4*a*c^3*d^3*e^2)*f*g + (18*a*c^3*d^4*e - a^2*
c^2*d^2*e^3)*g^2)*x^3 + (35*(c^4*d^5 + 2*a*c^3*d^3*e^2)*f^2 + 14*(4*a*c^3*d^4*e
- a^2*c^2*d^2*e^3)*f*g - (a^2*c^2*d^3*e^2 - 4*a^3*c*d*e^4)*g^2)*x^2 + (35*(2*a*c
^3*d^4*e + a^2*c^2*d^2*e^3)*f^2 - 14*(a^2*c^2*d^3*e^2 + 2*a^3*c*d*e^4)*f*g + 4*(
a^3*c*d^2*e^3 + 2*a^4*e^5)*g^2)*x)/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*
sqrt(e*x + d)*c^3*d^3)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{\left (d + e x\right ) \left (a e + c d x\right )} \left (f + g x\right )^{2}}{\sqrt{d + e x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((g*x+f)**2*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d)**(1/2),x)

[Out]

Integral(sqrt((d + e*x)*(a*e + c*d*x))*(f + g*x)**2/sqrt(d + e*x), x)

_______________________________________________________________________________________

GIAC/XCAS [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(g*x + f)^2/sqrt(e*x + d),x, algorithm="giac")

[Out]

Timed out